Serveur d'exploration Glutathion S-transférase végétale

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Effect of Tannic Acid on Nutrition and Activities of Detoxification Enzymes and Acetylcholinesterase of the Fall Webworm (Lepidoptera: Arctiidae).

Identifieur interne : 000175 ( Main/Exploration ); précédent : 000174; suivant : 000176

Effect of Tannic Acid on Nutrition and Activities of Detoxification Enzymes and Acetylcholinesterase of the Fall Webworm (Lepidoptera: Arctiidae).

Auteurs : Yufei Yuan [République populaire de Chine] ; Lusha Li [République populaire de Chine] ; Jingfen Zhao [République populaire de Chine] ; Min Chen [République populaire de Chine]

Source :

RBID : pubmed:32061083

Descripteurs français

English descriptors

Abstract

Plant tannins, polyphenolic plant secondary metabolites are involved in important chemical defense processes in plants. In this study, tannic acid was used as the standard of plant tannins to determine the effects on nutritional indices and activities of glutathione S-transferases (GSTs), cytochrome P450 monooxygenase (CYP450), carboxylesterase (CarE), and acetylcholinesterase (AChE) in fourth-instar larvae of Hyphantria cunea (Drury) by feeding on an artificial diet containing tannic acid under different treatments. We found that tannic acid significantly affected the digestive capacity and food utilization rate of H. cunea larvae. A tannic acid concentration of less than 2.0% promoted feeding and the utilization of undesirable food by H. cunea larvae, while inhibitory effects were observed at high concentrations (>2.5%). Tannic acid had a significant effect on the activity of detoxification enzymes and AChE in H. cunea larvae in concentration-dependent and time-dependent manners (P < 0.05). These results provide new insights into the potential mechanisms underlying detoxification in H. cunea larvae against tannic acid in host plants.

DOI: 10.1093/jisesa/ieaa001
PubMed: 32061083
PubMed Central: PMC7022684


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Effect of Tannic Acid on Nutrition and Activities of Detoxification Enzymes and Acetylcholinesterase of the Fall Webworm (Lepidoptera: Arctiidae).</title>
<author>
<name sortKey="Yuan, Yufei" sort="Yuan, Yufei" uniqKey="Yuan Y" first="Yufei" last="Yuan">Yufei Yuan</name>
<affiliation wicri:level="3">
<nlm:affiliation>Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Li, Lusha" sort="Li, Lusha" uniqKey="Li L" first="Lusha" last="Li">Lusha Li</name>
<affiliation wicri:level="3">
<nlm:affiliation>Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Zhao, Jingfen" sort="Zhao, Jingfen" uniqKey="Zhao J" first="Jingfen" last="Zhao">Jingfen Zhao</name>
<affiliation wicri:level="3">
<nlm:affiliation>Forestry Station of Fengtai District Garden Greening Bureau, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Forestry Station of Fengtai District Garden Greening Bureau, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Chen, Min" sort="Chen, Min" uniqKey="Chen M" first="Min" last="Chen">Min Chen</name>
<affiliation wicri:level="3">
<nlm:affiliation>Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32061083</idno>
<idno type="pmid">32061083</idno>
<idno type="doi">10.1093/jisesa/ieaa001</idno>
<idno type="pmc">PMC7022684</idno>
<idno type="wicri:Area/Main/Corpus">000212</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000212</idno>
<idno type="wicri:Area/Main/Curation">000212</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000212</idno>
<idno type="wicri:Area/Main/Exploration">000212</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Effect of Tannic Acid on Nutrition and Activities of Detoxification Enzymes and Acetylcholinesterase of the Fall Webworm (Lepidoptera: Arctiidae).</title>
<author>
<name sortKey="Yuan, Yufei" sort="Yuan, Yufei" uniqKey="Yuan Y" first="Yufei" last="Yuan">Yufei Yuan</name>
<affiliation wicri:level="3">
<nlm:affiliation>Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Li, Lusha" sort="Li, Lusha" uniqKey="Li L" first="Lusha" last="Li">Lusha Li</name>
<affiliation wicri:level="3">
<nlm:affiliation>Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Zhao, Jingfen" sort="Zhao, Jingfen" uniqKey="Zhao J" first="Jingfen" last="Zhao">Jingfen Zhao</name>
<affiliation wicri:level="3">
<nlm:affiliation>Forestry Station of Fengtai District Garden Greening Bureau, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Forestry Station of Fengtai District Garden Greening Bureau, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Chen, Min" sort="Chen, Min" uniqKey="Chen M" first="Min" last="Chen">Min Chen</name>
<affiliation wicri:level="3">
<nlm:affiliation>Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of insect science (Online)</title>
<idno type="eISSN">1536-2442</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Acetylcholinesterase (metabolism)</term>
<term>Animal Nutritional Physiological Phenomena (MeSH)</term>
<term>Animals (MeSH)</term>
<term>Carboxylesterase (metabolism)</term>
<term>Cytochrome P-450 Enzyme System (metabolism)</term>
<term>Glutathione Transferase (metabolism)</term>
<term>Inactivation, Metabolic (MeSH)</term>
<term>Larva (drug effects)</term>
<term>Larva (enzymology)</term>
<term>Moths (drug effects)</term>
<term>Moths (enzymology)</term>
<term>Moths (growth & development)</term>
<term>Tannins (pharmacology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Acetylcholinesterase (métabolisme)</term>
<term>Animaux (MeSH)</term>
<term>Carboxylesterase (métabolisme)</term>
<term>Cytochrome P-450 enzyme system (métabolisme)</term>
<term>Glutathione transferase (métabolisme)</term>
<term>Inactivation métabolique (MeSH)</term>
<term>Larve (effets des médicaments et des substances chimiques)</term>
<term>Larve (enzymologie)</term>
<term>Papillons de nuit (croissance et développement)</term>
<term>Papillons de nuit (effets des médicaments et des substances chimiques)</term>
<term>Papillons de nuit (enzymologie)</term>
<term>Phénomènes physiologiques nutritionnels chez l'animal (MeSH)</term>
<term>Tanins (pharmacologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Acetylcholinesterase</term>
<term>Carboxylesterase</term>
<term>Cytochrome P-450 Enzyme System</term>
<term>Glutathione Transferase</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Papillons de nuit</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Larva</term>
<term>Moths</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Larve</term>
<term>Papillons de nuit</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Larve</term>
<term>Papillons de nuit</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Larva</term>
<term>Moths</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Moths</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Acetylcholinesterase</term>
<term>Carboxylesterase</term>
<term>Cytochrome P-450 enzyme system</term>
<term>Glutathione transferase</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Tanins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Tannins</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animal Nutritional Physiological Phenomena</term>
<term>Animals</term>
<term>Inactivation, Metabolic</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Inactivation métabolique</term>
<term>Phénomènes physiologiques nutritionnels chez l'animal</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Plant tannins, polyphenolic plant secondary metabolites are involved in important chemical defense processes in plants. In this study, tannic acid was used as the standard of plant tannins to determine the effects on nutritional indices and activities of glutathione S-transferases (GSTs), cytochrome P450 monooxygenase (CYP450), carboxylesterase (CarE), and acetylcholinesterase (AChE) in fourth-instar larvae of Hyphantria cunea (Drury) by feeding on an artificial diet containing tannic acid under different treatments. We found that tannic acid significantly affected the digestive capacity and food utilization rate of H. cunea larvae. A tannic acid concentration of less than 2.0% promoted feeding and the utilization of undesirable food by H. cunea larvae, while inhibitory effects were observed at high concentrations (>2.5%). Tannic acid had a significant effect on the activity of detoxification enzymes and AChE in H. cunea larvae in concentration-dependent and time-dependent manners (P < 0.05). These results provide new insights into the potential mechanisms underlying detoxification in H. cunea larvae against tannic acid in host plants.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">32061083</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>02</Month>
<Day>27</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>02</Month>
<Day>27</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1536-2442</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>20</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2020</Year>
<Month>Jan</Month>
<Day>01</Day>
</PubDate>
</JournalIssue>
<Title>Journal of insect science (Online)</Title>
<ISOAbbreviation>J Insect Sci</ISOAbbreviation>
</Journal>
<ArticleTitle>Effect of Tannic Acid on Nutrition and Activities of Detoxification Enzymes and Acetylcholinesterase of the Fall Webworm (Lepidoptera: Arctiidae).</ArticleTitle>
<ELocationID EIdType="pii" ValidYN="Y">8</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.1093/jisesa/ieaa001</ELocationID>
<Abstract>
<AbstractText>Plant tannins, polyphenolic plant secondary metabolites are involved in important chemical defense processes in plants. In this study, tannic acid was used as the standard of plant tannins to determine the effects on nutritional indices and activities of glutathione S-transferases (GSTs), cytochrome P450 monooxygenase (CYP450), carboxylesterase (CarE), and acetylcholinesterase (AChE) in fourth-instar larvae of Hyphantria cunea (Drury) by feeding on an artificial diet containing tannic acid under different treatments. We found that tannic acid significantly affected the digestive capacity and food utilization rate of H. cunea larvae. A tannic acid concentration of less than 2.0% promoted feeding and the utilization of undesirable food by H. cunea larvae, while inhibitory effects were observed at high concentrations (>2.5%). Tannic acid had a significant effect on the activity of detoxification enzymes and AChE in H. cunea larvae in concentration-dependent and time-dependent manners (P < 0.05). These results provide new insights into the potential mechanisms underlying detoxification in H. cunea larvae against tannic acid in host plants.</AbstractText>
<CopyrightInformation>© The Author(s) 2020. Published by Oxford University Press on behalf of Entomological Society of America.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Yuan</LastName>
<ForeName>Yufei</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Lusha</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhao</LastName>
<ForeName>Jingfen</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Forestry Station of Fengtai District Garden Greening Bureau, Beijing, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chen</LastName>
<ForeName>Min</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing, China.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Insect Sci</MedlineTA>
<NlmUniqueID>101096396</NlmUniqueID>
<ISSNLinking>1536-2442</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D013634">Tannins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9035-51-2</RegistryNumber>
<NameOfSubstance UI="D003577">Cytochrome P-450 Enzyme System</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.5.1.18</RegistryNumber>
<NameOfSubstance UI="D005982">Glutathione Transferase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.1.1.1</RegistryNumber>
<NameOfSubstance UI="D043182">Carboxylesterase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.1.1.7</RegistryNumber>
<NameOfSubstance UI="D000110">Acetylcholinesterase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000110" MajorTopicYN="N">Acetylcholinesterase</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000824" MajorTopicYN="N">Animal Nutritional Physiological Phenomena</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D043182" MajorTopicYN="N">Carboxylesterase</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003577" MajorTopicYN="N">Cytochrome P-450 Enzyme System</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005982" MajorTopicYN="N">Glutathione Transferase</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008658" MajorTopicYN="N">Inactivation, Metabolic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007814" MajorTopicYN="N">Larva</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009036" MajorTopicYN="N">Moths</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013634" MajorTopicYN="N">Tannins</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Hyphantria cunea </Keyword>
<Keyword MajorTopicYN="N">detoxification enzyme</Keyword>
<Keyword MajorTopicYN="N">nutritional effect</Keyword>
<Keyword MajorTopicYN="N">tannic acid</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>10</Month>
<Day>28</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>2</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>2</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>2</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32061083</ArticleId>
<ArticleId IdType="pii">5736528</ArticleId>
<ArticleId IdType="doi">10.1093/jisesa/ieaa001</ArticleId>
<ArticleId IdType="pmc">PMC7022684</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Insect Mol Biol. 2010 Mar;19 Suppl 2:155-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20482647</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Ecol Evol. 2007 Jun;22(6):298-307</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17324485</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Ecol Evol. 2019 Jan;3(1):105-115</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30532047</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Pestic Biochem Physiol. 2019 Feb;154:32-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30765054</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2016 May 23;11(5):e0155682</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27214257</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Insect Sci. 2013;13:44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23909949</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Comp Physiol A. 1996 Aug;179(2):255-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8765561</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2011 Sep;72(13):1551-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21354580</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 1988 Jun;14(6):1455-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24276396</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Insect Sci. 2009;9:1-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20050772</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1983 Jul 22;221(4608):374-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17798893</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 1986 Feb;12(2):533-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24306795</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Physiol. 2013 Dec 20;4:359</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24391591</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2013 Jan 8;110(2):E113-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23248300</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2003 Sep;64(1):21-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12946403</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2018 Jun 29;8(1):9841</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29959354</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Insect Sci. 2016 Jan 30;16:</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26826651</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecotoxicol Environ Saf. 2008 Jun;70(2):244-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17765967</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Insect Mol Biol. 2018 Aug;27(4):522-532</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29749087</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Molecules. 2017 Jan 20;22(1):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28117698</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Entomol. 1984;29:71-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6362551</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1996 Dec;112(4):1411-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8972591</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Insect Sci. 2019 Feb;31:131-138</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31109666</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2002 Jan;28(1):145-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11868670</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chemosphere. 2019 Mar;219:961-970</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30572243</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dose Response. 2010 Apr 23;9(1):79-116</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21431080</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2011 Nov 23;12:575</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22111916</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Neuropharmacol. 2013 May;11(3):315-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24179466</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
<settlement>
<li>Pékin</li>
</settlement>
</list>
<tree>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Yuan, Yufei" sort="Yuan, Yufei" uniqKey="Yuan Y" first="Yufei" last="Yuan">Yufei Yuan</name>
</noRegion>
<name sortKey="Chen, Min" sort="Chen, Min" uniqKey="Chen M" first="Min" last="Chen">Min Chen</name>
<name sortKey="Li, Lusha" sort="Li, Lusha" uniqKey="Li L" first="Lusha" last="Li">Lusha Li</name>
<name sortKey="Zhao, Jingfen" sort="Zhao, Jingfen" uniqKey="Zhao J" first="Jingfen" last="Zhao">Jingfen Zhao</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PlantGlutaTransV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000175 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000175 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PlantGlutaTransV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32061083
   |texte=   Effect of Tannic Acid on Nutrition and Activities of Detoxification Enzymes and Acetylcholinesterase of the Fall Webworm (Lepidoptera: Arctiidae).
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32061083" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PlantGlutaTransV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat Nov 21 15:50:29 2020. Site generation: Sat Nov 21 15:50:53 2020